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When tissue deficiencies occur as a result of trauma, disease, or congenital conditions, there is a desire to provide
functional replacement tissues to the patient. The use of autografts is ideal when this option is available and is often
applied for both soft and hard tissue defects with a broad variety of approaches, although donor site morbidity is a
problematic consideration. In many cases, such donor tissue is not available and allotransplantation is favored, albeit
with the frequently accompanying disadvantages of a limited donor supply and immunosuppressive therapy. In
tissue engineering, a central concept is the application of a temporary biomaterial scaffold at the defect site to facil-
itate healing that will provide some restoration of functionality. If this scaffold is used to carry precursor cells or
other features that may induce a functional healing, the outcome potential may be further improved. In designing
such solutions for tissue repair and replacement, the parameters that define the scaffold must be selected and
optimized to provide the best possible outcome. If cells are to be used, this adds further design (and regulatory)
complexity. This chapter focuses on the design principles affecting degradable biomaterial scaffolds used in tissue
engineering. Although acellular scaffold approaches are considered, the cellular component of seeded scaffolds will
not be explicitly addressed; relevant considerations are covered elsewhere in this text.

FUNCTION AND APPLICATION-ORIENTED DESIGN OF BIOMATERIAL SCAFFOLDS

The objective for a given scaffold design is to meet the clinical needs for a specific application or set of applica-
tions. The better the understanding of the clinical need, including the underlying tissue physiology, disease pathol-
ogy, and other impactful environmental parameters, the more appropriately the design parameters can be defined.
As cellular and molecular biology knowledge have rapidly advanced and pathological processes are better defined,
the ability to harness this knowledge in designing more advanced scaffolds has grown. The early use of temporary
scaffolds in medicine was for simple mechanical support (e.g., sutures), whereas research efforts in recent decades
have expanded the potential functional role that the scaffold can have, including the designed modulation of cell
behavior and the incorporation of controlled release for bioactive agents.

Mechanical Support

Tissue loss and mechanical failure can be caused by various reasons, including disease processes, trauma, burn,
surgical resection, and chronic inflammation. Biomaterial scaffold implantation may provide permanent or tempo-
rary mechanical support, hence maintaining the structural and functional integrity of the host tissue. In some recon-
structive or cosmetic applications, the implanted scaffold role may be to improve aesthetics in addition to providing
appropriate tactile or load-bearing behavior.

Mechanical support structures comprise a major part of the implantable biomedical device industry. Most of these
devices are permanent and made from nondegradable metals and polymers. For instance, vascular stents are
commonly nondegradable metallics such as nitinol, stainless steel, and cobalt-chromium [1]. Vascular grafts and
abdominal wall meshes for hernia repair are often made from polyethylene terephthalate, polytetrafluoroethylene,
polyurethane, and polypropylene [2,3]. In the orthopedic field, orthopedic screws and plates, staples, and other fix-
ation devices are commonly stable metals [4,5]. However, each case, there has been substantial research and clinical
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investigation of degradable scaffolds [6e8]. The general cited advantages of using degradable scaffolds are (1) the
potential for new tissue regeneration, (2) the reduced chronic stimulus for inflammation and ongoing foreign body
response, (3) elimination of a nidus for infection risk once the material has degraded, and (4) the potential for
reduced thrombotic risk and the elimination of anticoagulant therapy for blood-contacting scaffold applications.
Despite these advantages, degradable scaffolds have not effectively displaced permanent scaffolds for a variety
of reasons. Common factors limiting broader adoption include a higher risk for mechanical failure [9,10], increased
early inflammatory response, and concerns with local tissue effects from degradation products and by-products [11].

It is common in the tissue engineering literature to find a hypothetical graph in which a hypothetical mechanical
parameter is plotted versus time with three curves: scaffold, new tissue, and net construct (or combined). The scaf-
fold curve slopes downward with time whereas the new tissue formation curve increases. Usually these curves are
matched so that the net level of the mechanical parameter is maintained during the healing process. Of course, in
reality this is often not the case; scaffolds remain longer than needed and potentially stress shield the tissue. Of
greater concern is scaffold mechanical failure when the new tissue is insufficiently strong to take on the required
load (Fig. 30.1). This is a serious concern in that such mechanical failures lead to morbidity and mortality that
have limited the broader adoption of many degradable scaffold approaches, as indicated earlier. Also, such mechan-
ical failure may be related to the underlying disease process in the treated population that may not be apparent in
preclinical testing or in the application of such an approach in other populations. Therefore, in addition to selecting
biomaterial scaffold designs with appropriate initial mechanical parameters approximating the host tissue, match-
ing the degradation rate of temporary scaffolds to tissue integration and maturation is greatly important. In fact,
sophisticated models seeking to capture the underlying physics and biology are under development [12].

At a cellular scale, a great deal of research in has examined how the microscale mechanical properties of bioma-
terial scaffolds can modulate cell behavior. Biomaterial substrate stiffness affects stem cell differentiation, including
mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells [13e15]. Many molecular path-
ways involved in this process have been described [16,17]. In addition to stem cell effects, substrate stiffness has been
shown to affect primary cell phenotypes, including the macrophage and its polarization [18,19]. Macrophages are
important cells involved in the foreign body response; thus, substrate stiffness also relates to the host tissue response
to scaffolds. Researchers have shown that biomaterial stiffness modulates the adhesion, migration, and proliferation
for other types of cells, as well [20].

Given the mechanical support functions that are defined for a specific clinical application of a scaffold, together
with the increasingly appreciated effect that mechanical parameters can have on host response and cell behavior,
selecting materials with suitable mechanical parameters is usually the first step in scaffold design. Generally, metals
and ceramics have high stiffness and strength (Fig. 30.2A and B), as do many composite materials containing these
two major categories of biomaterials for scaffolding. Between the two, ceramics have the disadvantage of the risk for
brittle fracture. In comparison, synthetic polymeric materials and naturally derived materials are usually weaker in
all major aspects. However, polymers and naturally derived materials have lower densities; thus, the differences in
specific modulus and specific strength between them andmetals and ceramics are not as large. Because most human
tissues have stiffness values below the gigapascal range (Fig. 30.2C) [21], metals and ceramics are commonly used in
hard tissue replacements (bone and teeth) and applications in which smaller scaffold dimensions are desired (e.g.,
coronary stents), whereas polymers and naturally derived materials are more often used for soft tissue substitutes.

FIGURE 30.1 Mechanical support by scaffoldeintegrated tissue. The blue line indicates mechanical support by degrading scaffold; the red line,
mechanical support by integrated tissue; and the green line, combined mechanical support by the scaffoldetissue combination. (A) Ideal matching
between scaffold degradation and tissue integration. (B) The scaffold degrades too quickly and tissue generation is unable to compensate for some
interim period, presenting a failure risk. (C) Slower scaffold degradation stress shields new tissue or prevents adequate cell migration and
extracellular matrix (ECM) elaboration, leading to inadequate mechanical properties at a later time point.
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Degradation Profile

As noted previously, scaffold degradation is important for tissue integration and should be well-synchronized
with the latter to maintain mechanical support in implantation sites. Aside from tissue integration, degradation
can have a critical role in providing pathways for metabolite diffusion and angiogenesis, as well as the release of
agents loaded into the material.

Degradation Mechanisms

The mechanisms at work in biomaterial scaffold degradation vary by material type. For polymeric biomaterials,
the most commonly seen mechanism is hydrolytic cleavage of backbone bonds (ester, amide, urethane, and carbon-
ate) in polymer chains by water molecules, producing oligomers and monomers with lower molecular weights and
higher solubility (Fig. 30.3A) [23]. Enzymatic facilitation of such cleavage reactions can be an important factor in
accelerating degradation in vivo, and the use of enzymes in degradation buffer solutions to study degradation
in vitro is common. Polymer chains can also be cleaved by free radicals, irradiation, reduction reactions, and other
reagents or stimulus, depending on the bonding mechanism [24e26]. Newer concepts in polymeric biomaterial
degradation include increased solubility induced by side chain cleavage [27], self-immolating depolymerization
[28], and the dissociation of supramolecular assemblies [29]. Metallic biomaterials are almost exclusively selected
for their degradation (corrosion) resistance. However, a great deal of research has been focused on degradable metals
such as magnesium and zinc alloys for use as temporary scaffolds in a broad variety of applications [30e32]. The
corrosion process proceeds by coupled electrochemical reactions with electrolytes to produce oxides, hydrogen
gas, hydroxides, or other compounds (Fig. 30.3B) [33]. A high concentration of Cl� ions significantly accelerates
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FIGURE 30.2 (A, B) Ashby chart of strength versus modulus. The “strength” for metals is the 0.2% offset yield strength. For polymers, it is the
1% yield strength. For ceramics and glasses, it is the compressive crushing strength, roughly 15 times larger than the tensile (fracture) strength. For
composites, it is the tensile strength. For elastomers, it is the tear strength [22]. (C) Young’s, or elastic, modulus of tissues [21]. CFRP, carbon
fiberereinforced thermoplastic; EVA, ethylene(vinyl acetate); GFRP, glass fiberereinforced plastic; MOR, modulus of rupture; PA, phosphatidic
acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PMMA, poly(methyl methacrylate); PP, polypropylene; PS, phosphatidylserine;
PTFE, polytetrafluoroethylene; WC, water cosolvent.
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the corrosion of metals. Cells are also subsequently involved in breaking down the metal substrate from the surface
(Fig. 30.3B) [33]. The degradation of commonly used ceramic scaffolds (tricalcium phosphate, hydroxyapatite, and
dicalcium phosphate) starts with the dissolution of CaP components, which is heavily affected by the solubility of
the specific material. Various cell types (monocytes/macrophages, fibroblasts, and osteoblasts) are then involved in
the degradation process by phagocytic mechanisms or via an acidic mechanism to reduce the microenvironmental
pH that results in demineralization of the ceramic matrix and resorption [34]. For biologically sourced materials,
specific enzymatic degradation has an essential role in degradation, and resistance to such degradation varies
with the material composition, processing history and local tissue conditions.

Factors That Affect Degradation Rates

Several factors affect the degradation rates of biomaterial scaffolds, and these factors can be leveraged to modu-
late the degradation profiles of corresponding scaffolds. Most obviously, the molecular composition of the scaffold
will dictate the degradation profile. For polymers with hydrolytically cleavable backbone bonds as introduced
earlier, the bond type will heavily influence the degradation rate. For example, hydrolysis of anhydride bonds is
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FIGURE 30.3 (A) Hydrolytically degradable linkages used in biomaterials. (B) Schematic diagram of biocorrosion at the biodegradable metal
(BM)emedium interface [33].
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generally faster than ester bonds, which in turn is faster than amide and urethane bonds. Based on this effect, copoly-
merizing monomers that will result in different backbone bonds have been used to fine-tune the degradation rate of
polyesters and other polymers [35]. The molecular environment around the labile bond and the relative density of
labile bonds along the backbone are also important factors that can fine-tune the rate of degradation dramatically,
despite maintenance of the same labile group. As a result, polyesters can vary as a class of polymer from very rapidly
degrading to effectively nondegradable (e.g., polyethylene terephthalate). The hydrolytic cleavage of many of these
susceptible bonds is acid catalytic and autocatalytic (degradation products of these bonds are acids); basic salts have
been mixed with polyester substrates to slow down degradation whereas acidic monomers have been copolymer-
ized purposefully to accelerate the degradation of polyesters [27,36]. Another obvious option in controlling poly-
meric scaffold degradation is to choose the initial molecular weight of polymer building blocks so that a greater
or lesser number of cleavage events need to occur before solubility of the residual polymer is achieved.

For metallic scaffolds, innate factors affecting oxidation include the activity of the metal, phase organization (of
alloys), impurities, the processing history, and the stability of the formed oxide layers [33,37]. For ceramics, the
crystal type and degree of crystallinity are important parameters.

Enzymatic Degradation

Degradation on demand, or triggered degradation, is a concept receiving attention in the literature. For polymers,
such triggers can include electromagnetic radiation, ultrasound, heating/cooling, or the delivery of a triggering
molecule such as an enzyme. For metals, control of the oxidation/reduction reaction by the delivery of current is
a ready means of control.

Looking at enzymatically triggered degradation, numerous examples of scaffolds employing this technique have
been reported in which enzymes produced by the host tissue or delivered to the biomaterial scaffold accelerate
degradation, particularly for naturally derived biomaterials and polymers. Matrix metalloproteinases, elastase,
and other enzymes have been employed to cleave protein components in naturally derived biomaterials with
high specificity, whereas enzymes such as hyaluronidase and glucanases cleave polysaccharides including hyal-
uronic acid, alginate, and chitosan. Some of these enzymes accelerate the degradation of synthetic polymers as
well [38e42]. Segments of polypeptide, DNA, and other biomolecules have been deliberately covalently combined
with synthetic materials at the molecular level or by physical mixing to provide cleavage sites for the composite scaf-
folds [43e45]. Because enzyme expression levels vary among tissues and some are specifically and temporally
elevated in wound beds or sites of inflammation, they provide convenient local factors to be included and targeted
in designing scaffold degradation profiles [46e48].

Surface to Volume Ratio

Scaffold morphology, particularly the ratio of the surface area to the volume, has a significant effect on the degra-
dation of biomaterial scaffolds. Higher surface area ratios commonly lead to higher degradation rates of the scaffolds
as a result of the greater access of backbone bonds to the surrounding aqueous environment and cofactors present in
this environment. For example, electrospun nanofiber meshes made from certain polymers degrade faster than cast
films with the same component [49,50]. However, in some important cases, porous structures can be associated with
slower degradation [51]. This counterintuitive effect is postulated to result from the diffusion of catalytic reactants
out of the scaffolds more readily in the porous case. Rapid transport facilitated by pores also serves to stabilize the
pH in some Mg scaffolds, leading to a similar effect as that seen in some polymeric biomaterials [52,53]. Therefore,
both opposing effects need to be considered when designing the porous structure in scaffolds. Methods of fabri-
cating porous scaffolds are discussed in subsequent sections.

Surface Modification for Degradation Control

Another method for modulating scaffold degradation is to modify the surfaces. One mechanism is to change the
surface hydrophilicity/hydrophobicity, thereby increasing or reducing water uptake that would affect the hydroly-
sis process. Generally, hydrophilic coatings increase degradation rates whereas hydrophobic coatings do the oppo-
site [54e56]. For degradable metals, increasing corrosion resistance is usually the aim for surface modification,
particularly when a given alloy is attractive for its processability, mechanical properties, or other considerations.
Methods include simple polymeric coatings, molecular coatings that react with the surface oxide layer, plasma
ion implantation, physical vapor deposition, thermal oxidation, and various electrochemical oxidation methods
that have been widely applied to metallic biomaterials [56e60].
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In considering scaffold degradation in general, many external factors such as mechanical load or irradiation can
have a major impact on scaffold degradation rates. However, because the operational environment or processing
requirements are often fixed, no further discussion of these factors will be made here.

Controlled Release of Bioactive Agents

Scaffolds may also serve as a reservoir for bioactive agent delivery including small molecule drugs, proteins,
genes, cells and nanoparticles. Compared with the inherent physical and chemical features of scaffolds, the effects
of released bioactive agents can extend beyond implantation sites to recruit or control circulating cells that are bene-
ficial for tissue repair, and higher specificity can be achieved [61]. When two or more cargoes are loaded, correspond-
ing release profiles may be programmable, which provides flexibility and can yield more desirable effects when
orchestrated properly [62]. Logically, seeking synergy by combining the largely local benefits provided by the
degrading scaffold with the diffusing effects from controlled-release agents has been a consistent direction explored
in the effort to improve scaffold performance.

Many physical and chemical parameters of a scaffold affect the release profile experienced by the loaded cargo.
Several of these factors overlap with factors regulating scaffold degradation, as degrading scaffolds open new chan-
nels for cargo diffusion. Some of the more important scaffold design parameters that influence the release of water-
soluble agents are discussed subsequently.

Effect of Porous Structures

In diffusion-controlled delivery systems, porous structures provide an easier path for the molecules detaching
from the material substrate to exit from the scaffolds and enter surrounding tissues, compared with diffusing
through relatively dense material substrates. Therefore, easier access to pores and higher connectivity between pores
facilitate faster soluble molecule release from a scaffold [63]. However, this theory does not always strictly apply
because higher porosities may decrease the degradation rates of some polymer scaffolds, which would slow the
accelerated delivery owing to the degradation effects.

At the molecular level, free volume will affect the diffusion rate. Taking hydrated hydrogel systems, for example,
for gels with mesh sizes comparable to the size of the loaded agent, diffusion coefficients are decreased owing to
steric hindrance provided by the cross-linked polymer chains [64]. Mesh sizes comparable to the size of the loaded
agent increase the molecule diffusion path length compared with hydrogels with mesh sizes much larger than the
releasing agent [64].

Affinity-Based Release

Affinity between the bioactive agent and the scaffold substrate affects the tendency of loaded molecules to
permeate the material volume and approach the interface of the materialepore and materiae/tissue. Through tran-
sient interactions between the loaded cargo and the delivery scaffold, affinity-based systems (e.g., heparin-binding
proteins for heparin, aptamers for nucleic acids, cyclodextrins for hydrophobic antibiotics) can minimize burst
release while providing fine-tunable release profiles by attenuating diffusional release [65]. Related studies about
affinity systems have shown that the addition of an affinity group to the therapeutic may be done so as not to affect
the bioactivity of interest detrimentally, which supports the practicality of this strategy [66,67]. In addition, mathe-
matical simulations have been developed to predict release profiles, which could be useful in predicting desired
release profiles and designing release systems [65].

An alternative method to fabricate affinity-based release systems is to recognize a specific molecule selectively by
the scaffold substrate known as molecular imprinting (Fig. 30.4) [68]. In molecular imprinting, the bioactive agents
work as template molecules to create imprints in the polymer networks, which subsequently function as affinity
binding domains [69]. Compared with nonaffinity systems, release retention was observed in imprinted systems
[70]. Molecular imprinting systems would be advantageous for drug delivery because of their ability to sustain
the release of a therapeutic agent, enhance the loading capacity, release the bioactive agents by in response to the
stimuli intelligently, and enantioselectively load and release the eutomer (isomer of interest) [71].

On-Demand Release

The strategies mentioned earlier are effective passive methods to obtain sustained, prolonged release. However, it
is often desirable to have a designed response to changing conditions as tissue healing or remodeling proceeds or to
provide a more optimal delivery of an agent dependent on externally determined factors. More active, on-demand
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modulation of bioactive agent release can be achieved with on-and-off triggers. The most commonly used triggering
mechanisms include (1) pH or temperature, (2) enzymes that cleave cross-linkers used to immobilize bioactive
agents, or (3) drugs or ions that trigger the cleavage of an engineered substrate, resulting in the release of encapsu-
lated cargoes [72e78]. Externally applied stimuli including light, electric or magnetic fields, and ultrasound can also
modify scaffold structures or bioactive agent immobilization and regulate release [72,79]. The strategies introduced
in this section can be applied to control the release of single bioactive agents and to program the delivery of two or
more factors to obtain synergic effects [72,80,81].

Scaffold Morphology

As noted previously, scaffold morphology can greatly influence scaffold degradation, mechanical properties, and
bioactive agent release. In this section, morphology is considered in terms of microscale pores and surface features,
and progress in modulating scaffold morphological parameters is discussed.

Methods for Fabricating Porous Scaffolds

Conventional fabrication methods to generate porous scaffolds commonly used in tissue engineering include
temperature-induced phase separation, salt leaching, gas foaming, electrospinning (for polymers and natural prod-
ucts); gas injection through the melt, gas foaming, plasma spraying, sintering, space holder methods (for metallic
scaffolds); and dry-pressing, extrusion, and slip-casting (for ceramic scaffolds). The literature provides many excel-
lent reviews covering these approaches and applications with materials processed in this manner [82e86]. Beyond
these methods, newer technologies allow more design control over the scaffold geometry.

Solid free-form fabrication (SFF) technologies are the most important advances made in scaffold fabrication [87].
Among SFF, three-dimensional (3D) printing fabricates 3D structures by inkjet printing liquid binder solution onto a
powder bed (Fig. 30.5A). Fused deposition modeling deposits molten thermoplastic materials through two heated
extrusion heads with a small orifice in a specific lay-down pattern. The basic concept of stereolithography is to con-
trol the polymerization spatially of photocurable resin in a 2D pattern and to extend it to 3D by repeating in-plane
polymerization in a layer-by-layer fashion (Fig. 30.5C). Selective laser sintering and melting employs a laser to scan
the surface of powdered polymer or metal particles in a specific 2D pattern to sinter by heating them above the
melting temperature. 3D plotting or direct-write bioprinting extrudes a viscous liquid material from a pressurized
syringe into a liquid medium with matching density and deposits the materials in one long continuous strand or in
individual dots to create desired 3D shapes (Fig. 30.5B) [87e91].

Anisotropic and Gradient Scaffolds

Anisotropy and gradient features are widely found in human tissues and organs, including the interfaces between
tissues, such as the boneecartilage interface. This morphology has important implications for the mechanical and
biological behavior of these tissues. Therefore, it is interesting to fabricate anisotropic and gradient biomaterials
as scaffolds to guide regeneration in a manner that provides greater biomimicry of the native state. Anisotropic
and gradient cues include composition, pore structure, stiffness, and fiber orientation. Avariety of scaffold process-
ing methods have been developed. Listed here are several representative examples for both methodologic and ther-
apeutic effects.

(A) (B) (C) (D)

FIGURE 30.4 Molecular imprinting. (A) Solution mixture of template, cross-linking monomer, and functional monomers (triangles, squares,
and circles). (B) Complex formation between functional monomers and template via covalent or noncovalent chemistry. (C) The formation of the
polymer network typically via free radical polymerization. (D) Template removal step that leaves binding sites specific to the original template
[68].
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Concentration gradients of bioactive molecules such as growth factors are often desired to drive spatially distinct
biological responses to a scaffold. Such gradients have been created using microfluidic platforms or allowing a
limited period of diffusion from a reservoir connected to one edge of a scaffold. In a case where platelet-derived
growth factor was differentially loaded, tissue invasion depth and blood vessel density increased with the magni-
tude of the gradient, whereas cortical neurites showed sensitivity to the magnitude of an insulin-like growth factor-1
concentration gradient [92,93]. By controlling the cross-linking density, a gradient modulus was achieved in a poly-
ethylene glycol (PEG) hydrogel. The human osteoarthritic chondrocyte number and phenotype were maintained in
regions with a lower storage modulus compared with stiffer regions [94]. A modified one-step gravity sintering
method was used to distribute pores with gradient sizes in calcium polyphosphate scaffolds, which induced greater
osteoblast differentiation and mineralization in gradient calcium polyphosphate scaffolds in contrast to homoge-
nous calcium polyphosphate scaffolds [95].

Creating thermal gradients when fabricating temperature-induced phase separation scaffolds was effective in
arranging unidirectional porous structures and induced anisotropic cell attachment, proliferation, and migration
[96,97]. Aligned fibrous scaffolds could be prepared by 3D printing and electrospinning. These unidirectional
features have been employed in organizing new tissues including nerve, cornea, tendon, and muscle [98e100].
Applying similar processing methods on both x and y directions could mimic alternating orientating cells and
ECM such as that in laminar cardiac tissues [101,102].

Surface Feature Manipulation

It is widely known that surface features and patterns can have a significant influence on cell attachment, locomo-
tion, survival, and differentiation [103,104]. However, discrete patterns can be challenging to fabricate across the sur-
faces of 3D scaffolds using many of the most common fabrication techniques. Less discrete control of the surface is

FIGURE 30.5 Schematic illustration of (A) three-dimensional (3D) printing, (B) 3D plotting/direct-write bioprinting, (C) stereolithography
[88e90]. LCD, liquid crystal display.
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more readily achieved, effectively varying the roughness, to affect responses of adhering cells [105,106]. Appropriate
creation of microsurface or nanosurface structures can either promote or reduce cell adhesion [107,108]. In addition,
cell migration can be guided by micrometer-scale roughness and hydrophilicity gradients [109,110]. Using specific
interactions with adsorbed proteins and cell surface receptors, cell migration can be modulated [111].

Injectable Scaffolds/Controlling Morphology In Situ

Traditionally, biomaterial scaffolds are formed in vitro before implantation. Technologies have allowed the mini-
mally invasive delivery of scaffolds and the formation in situ of desired microstructures, which reduce the risk for
invasive surgical procedures [112]. In addition, in situeformed pores would allow cell infiltration before significant
scaffold degradation, which may promote tissue integration.

Metallic scaffolds including coils and stents can be compressed with large deformation ratios to allow packaging
on catheters for guided delivery. After deployment in targeted regions, these scaffolds can either revert to their orig-
inal shape with high elasticity or be shaped by catheter-associated mechanisms such as inflatable balloons. Porous
ceramic and polymeric scaffolds can be delivered by injection as solution precursors mixed with porogens [113,114].
As the biocompatible solvents absorb and the porogens dissolve in vivo, the result is porous structures. An alterna-
tive method to forming porous hydrogels in situ is to bind micrometer building blocks covalently via self-assembly
in the tissue [115]. Elastic, high waterecontent hydrogels are squeezed through syringe needles and partially regain
their porous structure in vivo [116,117].

Traceability and Imaging

Common to preclinical biomaterial and medical device evaluations is the recovery at different time points of
implanted scaffolds from experimental animals or patients for subsequent histological, proteomic, and genetic as-
sessments. Valuable information has been extracted by employing this paradigm. However, real-time monitoring
options for the scaffold or tissue environment are limited and constrain the capacity of researchers and clinicians
to monitor scaffold performance and sense potential negative events such as mechanical failure and detailed aspects
of the biological response. Furthermore, as the tools to manipulate the status of smart, responsive biomaterials
continue to expand, the desire is increasing for parameters that reflect scaffold status at given postimplantation
time points.

Tracking scaffold material with noninvasive imaging techniques including magnetic resonance imaging, ultra-
sound, and computed tomography scanning is favored. Essential to scaffold tracking is the ability to differentiate
the biomaterial signal from the tissue background. Different signal generation mechanisms are involved in these im-
aging techniques, with contrast originating from differences in parameters such as water content, radio opacity, stiff-
ness, density, and magnetism. Contrast can be specifically created by adding contrast agents during scaffold
formation [118e121]. However, the potential toxicity of contrast agents needs to be considered [122]. Greater contrast
properties for the scaffold provide for improved resolution in the imaging techniques to reveal greater structural
detail. Although not considered in this chapter, the labeling of loaded cells is commonly pursued in the context
of tissue constructs [123].

SAFETY AND BIOCOMPATIBILITY REQUIREMENTS FOR
BIOMATERIAL SCAFFOLDS

Achieving the desired level of functionality for a given medical application is obviously central to assembling the
design objectives for a biomaterial scaffold system. However, the safety of such a system must explicitly be demon-
strated as the pathway to clinical application is traversed. Several general concerns will apply to all scaffolds,
whereas other considerations will be specific to the given application. The governing regulatory body (e.g., the
U.S. Food and Drug Administration) will ultimately dictate the specific testing required for progression to early-
stage clinical evaluation. Biomaterial scaffolds are medical devices by definition, and as the World Health Organi-
zation has pointed out in its guidelines: (1) absolute safety cannot be guaranteed, (2) the consideration of a given
device’s safety is a risk management issue, (3) safety is closely aligned with device effectiveness and performance,
(4) safety must be considered throughout the life span of the device, and (5) the assurance of safety requires shared
responsibility among the stakeholders [124]. As specifically addressed in International Standards Organization
Document 10993, some of the principal considerations in demonstrating device safety include local and systemic
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toxicity, carcinogenicity, pyrogenicity, sensitization, potential for infection, hemocompatibility, and adverse foreign
body responses. Furthermore, because the scaffold system is biodegradable, the evaluation of biodegradation prod-
ucts both in vitro and in vivo must be explicitly addressed.

Infection and Sterilization

Bacteria can adhere to biomaterial scaffolds before, during, and after the implantation procedure. Although
completely eliminating the possibility of bacterial contamination before implantation is impossible, major steriliza-
tion protocols including radiation, ethylene oxide (EtO), hydrogen peroxide, or steam can be designed to achieve a
recommended sterility assurance level (SAL) (usually a risk of one nonsterile device in a million) [125]. The scaffold
thus needs to be compatible with at least one of the sterilization methods and the design processes should reflect
consideration for sterilization step. The various methods each have trade-offs in terms of their impact on the under-
lying material, expense, and integration with the manufacturing process. Specifically, the sterilization procedure
may affect material performance by the same mechanisms used to kill bacteria, e.g., each of these sterilization
methods can decrease the molecular weight of PEG-based polymers [126]. For scaffolds made from natural products
(such as proteins or polysaccharides) and those containing naturally derived bioactive ingredients, EtO, heating, and
radiation may denature and alter the structural or functional components of the scaffold. Although metals and ce-
ramics aremore stable comparedwith polymer and naturally derivedmaterials, the labile versions of these materials
can be more sensitive to some of the sterilization methods. For all of the scaffold types, because degradability is a
feature, considerations must be given to packaging and storage methods, including the determination of shelf-life
under prescribed conditions.

Across all implanted medical devices, the incidence of device-centered infections is much higher than the SAL,
which has led to the conclusion that most infections occur as a result of exposure to bacteria during the implantation
procedure or after device placement (Fig. 30.6). An attractive feature of biodegradable scaffold systems is the limited
implant period, because the scaffold is replaced by native tissue, which removes the nidus for infection that remains
with nondegradable devices. Current strategies that have been explored to reduce the potential for infection in
nondegradable devices generally apply to scaffolds as well. These approaches fall into three general categories:
(1) surface modification to impart resistance to bacterial adhesion [127,128], (2) loading of antibiotic agents into
the biomaterial for controlled release [129,130], and (3) modifying or otherwise designing the surface to encourage

FIGURE 30.6 Patient risk factors for developing a biomaterial-associated infection. Revision surgery patients are at greater risk than primary
surgery implant patients, whereas the risk of an implant or device becoming infected hematogenously decreases with time after implant
placement due to more extensive host tissue integration [132].
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rapid coverage and integration with host tissue, thus minimizing the likelihood of further exposure to and coloni-
zation by planktonic bacteria [131]. Because the scaffold design generally seeks to integrate and be replaced with
native tissue, the latter approach is particularly attractive, although controlled antibiotic release in the early period
may also be attractive.

Toxicity

Major components of scaffolds are not present in the human body (e.g., polycaprolactone) or at unnaturally high
concentrations (e.g., high dosage of magnesium in magnesium scaffolds). These components and corresponding
degradation products may induce acute, subacute, or chronic toxicities, especially with allo- and xeno-sourced prod-
ucts [133]. Pyrogenicity, genotoxicity, carcinogenicity, reproductive, and developmental toxicity are the main risks of
scaffold toxicity.

Endotoxins are abundant in the environment and have high affinity to various biomaterials; they are the major
factors that cause pyrogenicity [134]. In addition, endotoxins have strong proinflammatory effects. Different
methods have been developed to lower the endotoxin level in scaffolds [135,136]. Resin monomers, glass ionomers,
graphene oxide nanosheets, and other substances have been shown to be genotoxic [137e139]. On the other hand,
much research has been focused on testing carcinogenicity in chemicals and small particles and has identified a va-
riety of risky species that are dissolved components or wear debris of biomaterial scaffolds [140,141]. Improvements
in scaffold design could mitigate the carcinogenic potentials, e.g., lower the possibility of generating debris produc-
tion [142]. Organ-on-a-chip and laboratory-on-a-chip technologies have been employed to fabricate medical-device-
on-a-chips as in vitro models for medical device toxicity tests [143].

Hemocompatibility

Scaffold hemocompatibility is a concern in the acute period when the device placement procedure involves some
level of blood contact, and more chronically for scaffolds that will experience ongoing exposure to blood, such as
with stents, cardiac valve scaffolds, or vascular grafts and patches. For all concerns regarding blood-contacting ma-
terials, the potential exists for the material to induce hemolysis, complement activation, and the formation of
thrombus or embolus. Hemolysis can result from the material properties or the induced flow path created by a scaf-
fold, such as highefluid shear regions. The characterization of hemolysis for materials and devices is well-described
in standards and in the literature [144,145]. Complement activation is generally related to surface properties; guid-
ance exists to assess the activation of this immune system pathway [146e148]. Like hemolysis, thrombogenicity
depends on both the material properties and the blood flow pathway near the scaffold surfaces. The status of the
patient’s blood is also a consideration, because anticoagulant and antiplatelet medications can be prescribed to
reduce the safety risks associated with thrombosis.

Thrombogenicity remains a major cause of scaffold failure for blood-contacting biomaterial scaffolds, including
vascular grafts and stents [149,150]. Thrombi formed on scaffolds may occlude vessels or embolize and lead to life-
threatening ischemia in distal tissues (e.g., pulmonary emboli or embolic stroke) [151]. Because the coagulation
pathway and platelet adhesion are initiated on artificial surfaces by protein adsorption, the design of scaffold surface
properties to alter this adhesion process to reduce thrombogenicity has long been a focus of research in the bioma-
terials community. Common approaches include those that seek to reduce overall protein adsorption by increasing
surface hydrophilicity, presenting zwitterionic groups, attaching specific bioactive molecules, or manipulating sur-
face roughness. Surface attachment of the anticoagulant heparin or heparin analogs is one of the most widely
employed strategies [152,153]. Surface modification with zwitterionic polymers such as phosphoryl choline or sul-
fobetaine derivatives can effectively reduce protein adsorption; it has been shown to reduce thrombogenesis for a
variety of underlying surfaces [154e156]. Layer-by-layer assembly has also used to create antifouling surfaces
[157]. Rough surfaces generally increase the potential for platelet deposition [158]. Therefore, smooth and even lubri-
cious scaffold surfaces have been employed to reduce thrombogenesis [159,160], although an alternative approach of
presenting rough surfaces to encourage rapid tissue integration has been used in chronically placed nondegradable
devices [161,162]. With the theme of tissue integration central to scaffold placement, the development of an endo-
thelial layer over the blood-contacting surfaces is an attractive way to reduce the ongoing risk for thrombosis and
thromboembolism. This is a common vision for blood vessel, cardiac valve, and stent scaffold design. Such endothe-
lialization may be encouraged by specific surface ligands or the controlled release of bioactive agents, as well as
endothelial cell or endothelial progenitor cell seeding or recruitment from the circulation or nearby tissue [163e165].
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Foreign Body Response

Implantation of biomaterial scaffolds induces inflammatory and wound healing pathways, which result in a com-
mon response if the material is synthetic and nondegradable. Similarities of the response across materials and
implant locations has led to the designation of these sequelae as the “foreign body response” (Fig. 30.7). Degradable
scaffolds will ultimately remove a central feature of the chronic foreign body response (the implant immediately sur-
rounded by encapsulating fibrous tissue), but during the degradation period of the scaffold, the response is roughly
equivalent, although ultimately with more active phagocytosis by macrophages in the surrounding tissue. Of note,
with materials based on decellularized tissue, this response outcome may follow a different pathway that has been
termed “constructive remodeling,” with important differences in the cellular andmolecular components [166]. From
a safety perspective, the extent of inflammation and fibrosis in the area of scaffold placement is a concern in terms of
how this response may lead to failure of the device or inhibition of the device’s function. Also of concern is the
variability that may occur with this response such that in some patients a more vigorous inflammatory response
may lead to accelerated scaffold degradation and early mechanical failure or other morbidity such as local pain
and swelling. Readers are encouraged to refer to reviews for the latest concepts regarding foreign body responses
[167e170].

Because macrophage behavior is a critical determinant in the direction of the foreign body response, there has
been attention to examining how macrophage behavior can be influenced by scaffold topography, stiffness, surface
chemistry, and naturally derived bioactive components [19,167,171,172]. Of interest to the biomaterial community
are strategies that may serve to influence the foreign body response by modulating macrophage behavior. One
approach is to passivate scaffold surfaces in an attempt to render the material substrate “invisible” or neutral to mac-
rophages. Ultralow-fouling zwitterionic hydrogels resisted macrophage adhesion and capsule formation for at least
3 months in a mouse subcutaneous model [173]. In another study, triazole derivatives of alginate were identified to
modulate immune cell populations at the surface of hydrogels made from these molecules, specifically

FIGURE 30.7 Sequence of events involved in inflammatory and wound healing responses leading to foreign body giant cell formation. This
shows the potential importance of mast cells in the acute inflammatory phase and T helper 2 (Th2) lymphocytes in the transient chronic
inflammatory phase with the production of interleukin (IL)-4 and IL-13, which can induce monocyte andmacrophage fusion to form foreign body
giant cells. PMN, polymorphonuclear leukocytes [167].
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macrophages, in a manner that inhibited their activation and disrupted fibrotic processes, leading to the mitigation
of foreign body response in nonhuman primate models [174]. A second strategy has been to polarize local
macrophages actively toward an M2 phenotype (a phenotype associated with the promotion of tissue repair and
regeneration in contrast to the proinflammatory M1 phenotype [168]). It was widely reported that a decellularized
tissue-based material alternative referred to as ECM-based products can induce M2 polarization of macrophages.
Thus, aside from fabricating scaffolds directly from ECM products, efforts have been made to produce composites
of scaffolding material, usually synthetic polymers, and ECM-derived components as additives [168,175,176].

MANUFACTURABILITY

Even at the earliest stages of the design process for biomaterial scaffolds, it is worth considering how scaffold pro-
duction ultimately might be scaled up in a manner consistent with good manufacturing practice to ensure stable
quality. More broadly, translational and regulatory challenges from the manufacturing perspective will need to be
addressed if the scaffold is to move toward a clinical impact, and early identification of design limitations in this
area may allow the implementation of an approach with a greater likelihood of success.

As introduced earlier, selecting the scaffold material is often the first step in scaffold development. Regulatory
agencies focus on application-oriented pathways in which a specific type or composition of material is approved
for one application (device) at a time and reevaluation is needed for a different application. The selection of widely
used materials in approved devices such as poly(lactic-co-glycolic acid), stainless steel, and hydroxyl apatite can be
attractive because their safety as components in existing products has been demonstrated and general sterilization
and biocompatibility protocols have been addressed in a manner that may greatly reduce the material-associated
risk for the new application. Furthermore, supplier and manufacturing considerations, from raw material sourcing
to material synthesis, and even scaffold formation may have been addressed successfully. Taking polymeric bioma-
terials as an example, despite the exploding diversity of material designs reported in the literature and the great
advancement with controlled polymerization, a limited set of degradable polymers is still commonly implemented
owing to practical considerations regarding regulatory approval, costs, and manufacturability. Although newer
designs for degradable polymers may possess a better-controlled structure and molecular weight, enabling the inte-
gration of powerful biological and imaging functions, the synthesis and processing steps may be markedly more
complex, require more strictly monitored controls and systems, and require a more extensive approval pathway
compared with a less effective but still functional material. Some of these obstacles may be overcome by modifying
laboratory fabrication protocols and considering trade-offs in complexity or benefit early in the design and evalua-
tion process.

With rapid advances in SFF and the attractiveness of combining such technology with patient-specific imaging
and even personalized medicine, the promise is presented of better designs suited for individual patient needs.
One could imagine controlling the material, morphology, and bioactivity in a patient-specific manner. This will
be an area of substantial investment in coming years, and if the patient benefits are great enough compared with
nonindividualized solutions with simpler materials, the cost of implementing such technologies in a regulatory-
compatible and economically attractive manner would be justified.

SUMMARY

The use of temporary biomaterial scaffolds for regenerative medicine approaches to tissue failure provides a
means to support the transition from a synthetic, externally generated “bandage” to an autologous, functional tissue
outcome. The potential to mediate a complete and effective transition remains elusive for many tissues and disease
states. For the team designing such regenerative medicine solutions, the considerations for the scaffold are many,
and there is much more potential for the scaffold than to serve as a well-designed physical support that appropri-
ately transfers load to ingrowing tissue. As noted in this chapter, the team has an increasing array of tools to control
the degradation process, design for tissue integration, deliver bioactive agents in an appropriate temporal fashion,
and use these design options to meet specific hypothesized needs for the tissue and patient group in question.
Ultimately, scaffold design considerations must fit within a much broader array of considerations that will touch
upon many other topics covered in this text. As with many of those other topics, the field is dynamic, challenging,
and ripe with the opportunity for new investigators to have an impact on the future of regenerative medicine.
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